
Hindawi Publishing Corporation
Modelling and Simulation in Engineering
Volume 2012, Article ID 291318, 4 pages
doi:10.1155/2012/291318

Research Article

An Autonomous Underwater Vehicle Simulation Using Linear
Quadratic Servo Based on Open Control Platform

Nanang Syahroni1 and Jae Weon Choi2

1 Telecommunication Department, Politeknik Elektronika Negeri Surabaya, Surabaya 60111, Indonesia
2 School of Mechanical Engineering, Pusan National University, Busan 609-735, Republic of Korea

Correspondence should be addressed to Nanang Syahroni, nanang@eepis-its.edu

Received 4 April 2012; Accepted 10 July 2012

Academic Editor: Ahmed Rachid

Copyright © 2012 N. Syahroni and J. W. Choi. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

This paper presents an optimal regulator for depth control simulation of an autonomous underwater vehicle (AUV) using a
new approach of decentralized system environment called open control platform (OCP). Simulation results are presented to
demonstrate performance of the proposed method.

1. Introduction

To allow an efficient operation of AUV, a new algorithm
with a decentralized structure is developed. A new soft-
ware infrastructure called Open Control Platform (OCP)
accommodates changing navigation information and control
components [1–3]. An OCP extends real-time middleware
technology via CORBA middleware. In [4], many examples
of nice control algorithms for AUV had done in several
platforms, but in the implementation are widely opened for
software engineering.

2. Equations of Motion

The simplified 6DOF equations of motion in the dimension-
less form are considered in this paper [5]:

X = m
[
u̇− υr +wq − xG

(
q2 + r2)

+yG
(
pq − ṙ) + zG

(
pr + q̇

)]
,

Y = m
[
υ̇ + ur −wq + xG

(
pq + ṙ

)

−yG
(
p2 + r2) + zG

(
qr − ṗ

)]
,

Z = m
[
ẇ − uq + υp + xG

(
pr − q̇)

+yG
(
qr + ṗ

)− zG
(
p2 + q2)],

K = Ix ṗ +
(
Iz − Iy

)
qr + Ixy

(
pr − q̇)− Iyz

(
q2 − r2)

− Ixz
(
pq + ṙ

)

+m
[
yG
(
ẇ − uq + υp

)− zG
(
υ̇ + ur −wp)],

M = Iyq̇ + (Ix − Iz)pr − Ixy
(
qr + ṗ

)− Iyz
(
pq − ṙ)

− Ixz
(
p2 − r2)

+m
[
xG
(
ẇ − uq + υp

)− zG
(
u̇− υr +wq

)]
,

N = Izṙ +
(
Iy − Ix

)
pq − Ixy

(
p2 − q2)− Iyz

(
pr + q̇

)

+ Ixz
(
qr − ṗ

)

+m
[
xG
(
υ̇ + ur −wp)− yG

(
u̇− υr −wq)],

(1)

where, X , Y , and Z are surge, sway, and heave force,
respectively; K , M, and N are roll, pitch, and yaw moment,
respectively; p, q, and r are roll, pitch, and yaw rate,
respectively; u, v, and w are surge, sway, and heave velocity,
respectively; x, y, and z are body fixed axes in positive
forward, starboard, and down, respectively; Ix, Iy , and Iz are
moment of inertia at x-axis, y-axis, and z-axis, respectively;
xG, yG, and zG are longitudinal, athwart, and vertical position
of center of gravity, respectively; φ, θ, and ψ are roll,



2 Modelling and Simulation in Engineering

Send values

Vehicle trajectory

Demarshaling
trajectory value

CORBA event channel

Marshaling Marshaling 
trajectory value

Demarshaling

PC1 (164.125.73.140)PC2 (163.125.73.139)

Calculate K

Calculate P using ARE

Obtain Q and R values

Apply K into AUV control

Obtain θ,w, q, and z values
Plot in Matlab

θ,w, q, and z

,w, q, and z values,w, q, and z valuesθ θ

Figure 1: OCP infrastructure.

pitch, and yaw angle, respectively. After several steps of
linearization as in [6, 7], vertical motion equations with a
control input δ are given as the following:

θ̇ = q,

(m− Zẇ)ẇ −
(
mxG + Zq̇

)
q̇

= ZwUw +
(
m + Zq

)
Uq +U2Zδδ,

(−Mẇ −mxG)ẇ +
(
Iy −Mq̇

)
q̇

=−(zGW − zB)θ +MwUw +
(
Mq −mxG

)
Uq −MδU

2δ,

ż = −Uθ +w.
(2)

Finally, refer to the physical parameters of NPS AUV1 in [8],
the state space equation is obtained by:
⎡

⎢
⎢
⎢
⎣

θ̇
ẇ
q̇
ż

⎤

⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎣

0 0 1 0
0.0175 −1.273 −3.559 0
−0.052 1.273 −2.661 0
−5 1 0 0

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

θ
w
q
z

⎤

⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎣

0
0.085
21.79

0

⎤

⎥
⎥
⎥
⎦
δ.

(3)

3. Controller Design

Linear quadratic (LQ) servo is adopted to perform command
following regarding to the reference input. Consider an nth-
order system with r inputs and m outputs. Let the state
vector be x(t) = [xr(t); yp(t)], where yp(t) ∈ Rm×1 is
output and xr(t) ∈ R(n−m)×1 is rest of the system states. Let

e(t) = r(t)−y(t) ∈ Rm×1 be the error vector with r(t) ∈ Rm×1

which is planed as output and y(t) ∈ Rm×1 is reference. Then
the state space model can be rewritten as the following:

ẋ(t) = Ax(t) + Bu(t) (4)

with y(t) = Cpx(t), xr(t) = Dpx(t), Cp is [0m×(n−m) Im×m],
and Dp is [I(n−m)×(n−m) 0(n−m)×m].

LQ optimal control problem is to find a control law
u(t) = −Kx(t) which minimizes the performance index of
J = ∫∞0 [xT(t)Qx(t) + uT(t)Ru(t)]dt, where K = R−1BTP and
P is the solution of Riccati equation ATP+PA+PBR−1BTP+
Q = 0 with weighting matrices of Q ≥ 0 and R > 0.

The control input is given by u(t) = −Gx(t), where
the control gain G is consisted by G = [Gy Gr], where
Gy ∈ Rm×m and Gr ∈ Rm×(n−m). Then the control law can
be obtained by:

u(t) = −Gy y(t)−Grxr(t) +Gyr(t). (5)

Substituting (5) into (4), we have differential equation of
close-loop system as follows:

ẋ(t) =
[
Ar − BGyCp − BGyDp

]
x(t) + BGyr(t). (6)

Solution of (6) can be obtained by using Runge-Kutta 4th
order approximation:

x(t + 1) = x(t) +
(k1 + 2k2 + 2k3 + k4)

6
, (7)

where k1 = f (t, x(t)), k2 = f (t+ (h/2), x(t) + (h/2)k1), k3 =
f (t + (h/2), x(t) + (h/2)k2), and k4 = f (t + h, x(t) + hk3).



Modelling and Simulation in Engineering 3

matrix operation
AUV model

Control 
algorithm

C++
CORBA operation

Data 
(ASCII)

Sensor system
(hardware)

Results 
(ASCII)

CORBA event channel

Matlab

Figure 2: Matlab and C++ interfaces.

4. System Environment

In Figure 1, an OCP infrastructure for linear quadratic servo
simulations using two nodes PC as test beds with a general
10 Mb Ethernet, PC1 as a server and PC2 as client, connected
via middleware using CORBA event channel [9].

PC1 is used for running a Matlab simulation of the
vehicle model and control algorithm, while PC2 is utilized
for running a Matlab simulation as mission control station.
Figure 2 illustrates an operation of interface between C++
and Matlab. Through this interface, the C++ collects data
from PC2 through CORBA and creates data files in ASCII
format. The Matlab first picks up the data saved by C++ and
then performs matrix operations. The results are sent back
to C++ in the ASCII file format, and the C++ continues to
execute the communication task to send the results.

In Figure 3, a CORBA event service provides a flexible
model for asynchronous and group communication among
distributed objects. Consumers are the ultimate targets of
events generated by suppliers. Suppliers and consumers can
both play active and passive roles. An active push supplier
pushes an event to a passive push consumer; passive pull sup-
plier waits for active pull consumer to pull an event from it.

5. Simulation Results

In this simulation, our objective is to control the AUV with
speed at 2 m/sec, θ near zero, and depth z near −5 meters
with 15 times counter duration, and then change a depth to
−3 meters with 15 times counter duration more.

Then AUV returns to −5 meters depth with 15 times
counter duration, and finally returns to −3 meters depth,
as depicted in Figure 4. Assume 4◦ dive planes when pitch
angle deviates to 5◦ from zero, the AUV reaches a depth
of −5 feet with 0.95 feet deviation. Therefore, all terms in
Q → 0 and R → 0, except q11 = (4/57.2958)−2 = 205.21,
q44 = (5/57.2958)−2 = 131.31, and r11 = (0.95)−2 = 110.

In Figure 5, control input history is presented. It is based
on depth reference input and output feedback. Compulsory

CORBA event channel

Supplier Customer

Supplier Customer

Push

Push

Pull

Pull

Figure 3: Event channel architecture.

1

0

−1

−2

−3

−4

−5

−6

−7

−8
0 5 10 15 20 25 30

Desire depth
With OCP
Without OCP

Desired depth versus AUV depth

z
(m

)

t (s)

Figure 4: Depth control trajectory.



4 Modelling and Simulation in Engineering

50

40

30

20

10

0

−10

−20

−30

Input angle versus pitch rate

Input angle OCP
Pitch rate OCP

Input angle
Pitch rate

0 5 10 15 20 25 30

t (s)

δ
(d

eg
)

Figure 5: Input angle, pitch rate versus pitch angle.

control input value represents the differences between depth
reference input and output feedback. The presented state
variable history consists of input angle, pitch rate during
moving, input angle with OCP, and pitch rate with OCP. We
can also see that the control algorithm is optimal because of
the input angle value is 12◦ and 14◦ to produce pitch rate
to reach more than 40◦/s and 15◦/s; however by using OCP,
input angle value is 20◦ and 5◦ to produce pitch rate to reach
more than 36◦/s and 8◦/s.

The weighting matrices selection can be performed
during run time in OCP environment. In order to increase
the degree of machine intelligence, we perform a standard
simulation using single weighting matrices, comparative
analysis of property of gain matrix, we have ‖K‖F = 0.4754
using standard simulations, and ‖K‖F = 0.5814 with OCP.

6. Concluding Remarks

This paper presented a new approach of decentralized system
environment using Matlab and CORBA event channel on
several machines; we believe it will emerge more investi-
gation in the current trends of real-time control system or
bilateral control system.

Our proposed method captures the simulation results
demonstrated that OCP could be used to provide the
additional delivery method for distributing any navigation
message among AUV implementation. Our future works
would be conducted on additional experiments and mea-
surements in this area, to increase application scalability to
distribute the large navigation information.

Acknowledgments

This paper was financially supported by the Ministry of
Knowledge Economy (MKE) and Korea Industrial Tech-
nology Foundation (KOTEF) through the Human Resource
Training Project for Strategic Technology.

References

[1] T. Samad and G. Balas, Software-Enabled Control: Information
Technology for Dynamical Systems, John Wiley & Sons/IEEE
Press, Hoboken, NJ, USA, 2003.

[2] J. L. Paunicka, W. E. Corman, and B. R. Mendel, “A CORBA-
based middleware solution for UAVs,” in Proceedings of the
4th International Symposium on Object-Oriented Real-Time
Distributed Computing, Germany, 2001.

[3] L. Wills, S. Kannan, B. Heck et al., “Open software infrastruc-
ture for reconfigurable control systems,” in Proceedings of the
American Control Conference, pp. 2799–2803, Chicago, Ill, USA,
June 2000.

[4] K. P. Valavanis, D. Gracanin, M. Matijasevic, R. Kolluru,
and G. A. Demetriou, “Control architectures for autonomous
underwater vehicles,” IEEE Control Systems Magazine, vol. 17,
no. 6, pp. 48–64, 1997.

[5] The Society of Naval Architects and Marine Engineers,
“Nomenclature for treating the motion of a submerged body
through a fluid,” Research Bulletin, no. 1–5.

[6] J. S. Riedel, Pitchfork bifurcations and dive plane reversal of
submarines at low speeds [Engineer’s Thesis], Naval Postgraduate
School, Calif, USA, 1993.

[7] R. Cristi, F. A. Papoulias, and A. J. Healey, “Adaptive sliding
mode control of autonomous underwater vehicles in the dive
plane,” IEEE Journal of Oceanic Engineering, vol. 15, no. 3, pp.
152–160, 1990.

[8] A. J. Healey, F. A. Papoulias, and R. Cristi, “Design and
experimental verification of a model based compensator for
rapid AUV depth control,” in Proceedings of the 6th International
Symposium on Unmanned Untethered Submersible Technology,
pp. 458–474, Washington, USA, June 1989.

[9] D. C. Schmidt, “An overview of the real-time CORBA specifica-
tion,” Computer, vol. 33, no. 6, pp. 56–63, 2000.


